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Abstract

In the previous paper, we presented a general expression for the

Taylor series for any function which can be expressed as a simple
product of a purely radial and purely angular part, In this paper
we apply that form of the Taylor series to the Yukawa potential
fy(r) = e-ar/r], and to several potential functions which can be

derived from it. TIn particular, we examine the expansion of the 1

Yukawa potential itself. 1In the 1limit as the exponent a vanishes,
the Yukawa potential transforms into the Coulomb potential. We show
that the limiting process applied to the Tavlor series for the Yukawa
potential yields the familiar form of the Laplace expansion of the
Coulomb potential. Differentiation of the Yukawa potential with
respect to the cxponent a vyields the exponential function. lHence,
we develop a Tavlor-Laplacc power series representation of the Morse
potential. Intcgration of the Yukawa potential with respect to the
exponent, in the sense of the Laplace transform, vields functions of
the form r 4. Thus, Taylor series for the Lennard-Jones and rclated
potentials can be constructed. TFinally, we consider a lLaplace-like
functional expansion of the Yukawa potential followed by a Tavlor
seriecs development about the end-point of a vector in the expansion.
This process illustrates the application of the general methods to

a4 more complicated angular dependence than one finds with the usc of
simple scalar functions., An appendix contains a Tavlor scries for
onc additional potential which is not directly related to the

Yukawa potential: the Woods-Saxon potential. The expansion for the

Buckingham exp-6 potential (totally derivable from the Yukawa potential)

is also given.
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1. Introduction

Given a general function G(r) of the vectorial separation

between two points, r = r; - rz, we can consider the expansion of this
function in two ways. In one form of cxpansion, wc¢ can express the
original function as a series of products of new functions. The

arguments of the individual functions depcnd only upon components of
ry or rp alone. Thus, the dependence on ry and r; in the original
function is separated. The other form of expansion is to consider
the development of the function as a power scrics in terms of the
displacement(s) about the vectorial end-point(s). The Taylor series
represents such a development.

[n this paper we develop Taylor series for scveral commonly used

potential cnergy functions. The functions all can be derived [rom the

Yukawa potential function:

y(r) = exp(-ar)/r. (1.1)

The particular functions we consider in addition to the Yukawa
potential are the Coulomb potential (we show this us a limiting form),
the exponcntial and Morsc potentials, and the Lennard-Jones potential.
Included is the Buckingham exp-6 potential which is merely a hybrid
form of terms which we consider. Our analysis shows that for parcent
functions which can be cxpressed as inversce powers, the Taylor series
is cquivalent to the Laplacc expansion of the same function,

An objective in sceking functional or power scries expansions
of various potential functions is to be able to simplify the potential

encrgy functions for complicated distributions of molecular sources.
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Thus, given a spatial distribution of sources for a particular
potential, e.g., electrostatic, exponential, Morse, or Lennard-
Jones, it is frequently nccessary to consider some form of symmetry-
adapted cxpansion. Briels (1980) has considcred this type of problem
for functional expansions of the Buckingham (1938) exp-6 potential. In
a number of instances, it is necessary to consider symmetry-adapted
Taylor series as well. Schmidt, Pons and McKinley (1980) considered
such an expansion in an analysis of the vibrations of ions and atoms
in condensed phases. The formulae we consider here simplify the
problem of constructing Taylor serics.

In the next section we list the formulae needed for the subsequent
discussion. 1In section 3 we consider the Taylor series for the Yukawa
potential. In section 4 we consider the limiting transitions to
the Coulomb, exponential, and Lennard-Jones potentials. Finally,
in section 5 we consider the Laplace functional expansion of the
Yukawa potential and the development of a Taylor scries for onc of
the functional clements. The Woods-Saxon (1954) and Buckingham (1938)

exp-06 potentials are considered briefly in an appendix.

Z. The General Taylor Series

In the preceeding paper (McKinley and Schmidt, 198 ) we showed
that for any function G(r) which is separable into purely radial and
angular parts of the form

G(r) = ¥, (1)F(r) (2.1)

wherce YAu(r) is the spherical harmonic function, the Taylor series
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in terms of the vectorial displacement ¢ is

—
y

Glree) = 42 (Mmo 1 D)™

(r)Y. ()
n=0 LM, 2,m fm

ne 1M

(2L+1y) ) 1/2
T+ (Z2x+1) (LQOOIAO)(LQMmIAu)Inl(r). (2.2)

In this formula (L2Mm|Au) is the Clebsch-Gordan coefficient (Rosc,

1957). A is given by (Morse and Feshback, 1953)

nt
0 for ¢ >n and n - £ odd
Ay © (2.3)
Ei%;i{gigg;g:}%#ﬁ for ¢ < n and 2 - n even
and Inf(r) is defined by
e pe— J ak kM) (k) (2.4)
) (2m)? 7y ’

wvhere jn(x) is the spherical Bessel function of the first Kind

(Arfken, 1970). The quantity f(k) is

F(k) = 4ni*der r2E(r)j, (kr). (2.5)
0
Faquation (2.2) and the supporting cquations (2.3)-(2.5) arc used in
the following sections.
We shall have nced to use the limiting form of eun (2.2) for
a scalar function : X = 3 = 0, This quantity was derived in the

precceding paper (McKinlev and Schmidt, 198 )




Go(r) = Vdu Xo(c"/n!)X(-i)g+nAn2PQ(r-c)lng(r). (2.0)
n= 3

Py(x) is the Legendre Polynomial.

3. Functional and Power Series for the Yukawa Potential

We now express the Yukawa potential, eqn (1.1), as
v(ir) = /IHYoo(r)%oxp(—ar). (3.1)
The Fourier transform is

(k)

i

(4n)3/2J dr r exp(-ar)jo(kr)

0

= (dﬂ)s/zk_lf dr exp(-ar)sin(kr)
= ) (3.2)

The radial factor, lng(r), in the general term of the Taylor scrices

is

| * L n+2 1
0

ke + a

jg(kr) (3.3

The integral can be cevaluated in the upper half of the complex planc.
The entire integrand is cven (because n - 2 is cven). Thus the
range is doubled to include the entire recal axis of k. We now

introduce the spherical Hiankel functions with the use of
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1

o kr) = ke hY (k)
[as is customary, Re stands (or the 'real part of']. The factor kn+:
in (3.3) recmoves the pole of order £+1 in hél)(kr) at k=0. Thus, the
only poles 1n the integrand are located at the points k=z2ia. As
a result, the integration yields moditficd spherical Besscl functions
of the third kind (Arfken, 1970) which are detined by

k (ar) = iQ+2hél)(iar). (5.5)

Altogether, we find

L y-bon+l.n-2, .
lnl(x) = (Jdw) “a i kg(dl).

The Yukawa potential at the displaced point now can be written as

(- n+l S
, + ¢ = . S . g - - . g .
y (r+¢) ) T ALl Po(r c)kz(dr). (3.6)
n, L

It is usetul to compare this form of the expansion with a Laplace-
tvpe functional cxpansion ol the same potential. |1n scction §
we consider the Taylor expansion of part of the following functional
form.] Given the Yukawa potential y(r), cqn (3.1), we can consider

the following relationship:

y(ri-rp) = R Jd3k »—Al»cxp[—ik-(rl—rg)] (3.7
N {2m)° k?+a”? T

A o e 4
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As is shown in section 5, with the use of two Ravlecigh expansions
for the exponential functions in eqn (3.7), the functional cxpansion

1=

,
?
1
!
i
1
H
i
]
i
i

.83

i

~ * ~
v(ri-r2) = 4m ) alx(ar\,)kk(ar))\M,(rl)\l\u(rﬂ (
A,
in which in(x) is the modified spherical Bessel function of the
tirst kind. The quantities s (<) represent the g¢reater (lesser) of
ry and r2. In this expression, apart from powers of r implicitly

contained in the representations of the transcendental functions

kn and in as infinite power series, there is no explicit dependence
on the powers of ry; or ro, The functional cxpansion is therefore
distinctly different from the Tavlor series. The angular dependence,
expressed through the Legendre polynomials, is the only similarity

hetween the two expressions.
]

4. Potentials Derived from the Yukawa Potential and its Tavior Sceries

In the Yukawa potential v(r), in the limit as a tends to zZero
we recover the Coulomb potential:
-ar

lim < = 1/r. (4.1)
T
a0

Differentiation of the Yukawa potential with respect to the cexponential

cocfficient a vields the simple exponential function:
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And, finally, when the Yukawa potential is part of the following

integral

e 4 L-ar
! ; J da a97- & — = L (4.3)
a-2)1 1 4

we recover functions of the form r Y,

In this section we consider these three basic limiting cases
and the Tavlor series which can be derived from the indicated limiting
processes,

The Coulomb potential is an appropriate limit of the Yukawa
potential, as indicated above. When this limit is applied to the

series representation (3.6), we obtain the following:

1 g i
TreeT = Mimoviree)
_ oy " Linta™ Ve (ar) 10, (627 (4.1)
& n!  ‘'n% ' Co AT ¢ \© )
n,? a-0
From the definition of the modified spherical Ressel function
(Arfken, 1970),
20711 1)1
lim ky(ar) = lim o—EE o g (222D (4.5)
a0 a~0 272t (ar) a»0 (ar)
so that
S 1L Y 1 R '
lim[a kg(ar)] 6n,9 =T (22-~1)11, (4.0
a~0 r
From eqn (2.3) which defines the coefficients AnQ’ we find




\, = T”'—TT‘T“ (4.7
CQ - -—9‘_ T . 8 n')

Upon the substitution of eqn (4.6) and (4.7) into (3.6), we obtain

3

e T LS T o) (4.8)
~ T

(X gl

which is identical to the lLaplace expansion of the Coulomb potential,
We note that if a similar analysis is carried out with the use
of eqn (4.22) of the preceeding paper (McKinley and Schmidt, 198 ),
we recover the Carlson-Rushbrooke (1950) expansion in the limit as
the quantity a  vanishes.
The simple exponential function exp(-ar) has been in use for

a considerable time as a representation of the repulsive interactions

which operate between atoms, ions, and molecules (Born and Maver. 1932).

Combinations of the exponential renulsion and inverse powers of
attraction arc commonly used in the analysis of intermolecular

interactions (llirschfelder, et al., 1954, Margenau and Kestner,
1969), A combination of exponential functions defines the Morse

(1929) potential:

M(r) = D Oa(ro-r)[ea(ro-r) - 2] (4.9)
in which D is an cnergy of dissociation, and r, is an cquilibrium
separation. Briels (1980) has considered the functional expansion of
the exponential component of the Buckingham exp-6 potential in order
to develop symmetry-adapted series.

The Taylor seriecs for the exponential function is
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doexpl-a(r+c)]

expl-a(r+c)} = -

- ATy (rec)-ia
noq  nl neg dal:

nly o an . (4,10

With the use of the mixed recurrence relation (Abramowitz and Stegun,

19065)

tki(z) = - ozk, (2) - (DK (2) (4.11)

in cqn (4.9), we pet

el aireer] = 5 A e ) - ek (ar
expl-a(r+c)] = nye~—ﬁ! AnQIQ(r L)[arkq_l(dt) (n-2)k, (ar) .

’ (4.12)

The Morse potential exnands as
n A A
M(rec) = D J L;%$l~ AP, (rec) (2% ?* ™ 2ar Kk, (2ar)
~ A n,Q, . 4 LV
(4.13)

(n~Q)k9(23r)] -2 enr°[ar kq_l(ar) - (n—Q)kQ(ar)]}.

Finally, we consider the Tavlor scries for |r+c] 9. Substituting
the Tavlor series for the Yukawa notential (3.6) into (4.3), we

obtain

] _ 1 (s $) ] q-z (—C)n A..A n+1’
|r+c|@ ERCER fodd a ngn*_ﬁT-’Anin(] cla k, (ar)
| . ("C)n A A o (]+n-]
= e ) Ano——;ﬁT_ Po(r-C)J da a ko(ar] (4.14)
T 05 , T , 0
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where we have exchanged the order of summation and integration. We
now can usc the mixed exponential-polyvnomial form of the modificed

spherical Bessel function (Abramowitz and Stepun, 1905)

-X Q
Crey - € (R+s)! -5
k() = X 420 )T (i-)T * (4.15)
to write
* ? o
- ' f e -
J da 2™ 1k9(ar) B % ) <($TS)-s lﬂJ da 0*M-S2pmar
0 s=( - o T/

(4.10)
The inteeral is uncomplicated and straightforward to cvaluate as
long as ¢>2. ([Note, from eqn (4.14) the expansion vanishes for
(4-2)<0 because the factorial becomes infinite.] Thus, the expansion

13

1 ! o (2+s)!(q+n-s-2)! ) n -
(AT R g YR IS (e R C IR CEr RASRIAR (4.17)

It is interesting to note that this form is equivalent to the result

obtained by Briels (1980) who used a functional expansion.

5. Laplace and Laplace-Taylor expansions of the Yukawa potential

The main problem we consider in this section concerns the
cvaluation of the Taylor series expansion of the function Y(YX’Tz)
about the point r;. Such an expansion is required, for cxample,
when one needs to consider a source at T, and the displacement
of a particle about the point r,; both points r and T sharc a

common origin,

” d
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Before we consider the displacement about r; by c in detail,
we first demonstrate cyqn (3.8), the Laplace functional expansion

of the Yukawa potential.

k?+a?

where here g is the strength of the source. The functional form of

y(ri-r2) 1is

The use of two Rayleigh expansions

expliker) = 4n § i
)

» U

in cqn (5.2) yviclds

The evaluation of this integral proceeds along lines similar to the

cvaluation of egqn (3.3). We write

Fotdy(r)) = <4 (5.

y(ry-rz) = - 1 fd’k _Amg exp(-ik<(ri-ro)}. (5.
T (2m)?3 k?+a? R

Vi (00, (K) Ty (k) (s.

. ~ * ~ ™ k2
y(rl—rz) = 8(} X Y (I‘))Y (ry)f dk - N ] (krl)j (krz) (5.
-~ ~ )\,U Al AIJ 0 k2+32 A A
upon intcgrating over the angles,

The radial integral is
« kK . ,

L) = | ak = ke, ). (s.
0 k2+&2

The Fourier transform is given by cqn (3.2) together with Ygo(k):

1)

4)

5)

e
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1, (% kY (1) :
[ = 5Re dk ——— k kr 5.¢
Z\LI-u K2+a? hy T (kr, ) gy (ke ) .0
in which r_ is the greater of ry, re. The (A+1)-order pole in hﬁl)
at k=0 1s removed by the (A+Z2)-order zero in kzjx(kr<). Hlence,

closing the contour above, the only pole is at k=+ia. The integral

1 is
I = 3ai,(ar_)k, (ar,). (5.7)

Thus, the Laplace expansion of the Yukawa potential is that given by

cqn (3.8):

A x A
y(ri-rp) = 4nqAEYAu(rl)qu(rz)alx(ar<)kx(ar>). (3.8)

We now consider the expansion about the point ry:

T 1
a § 5wy (ri-re)
n=0

y(ri+c-ra)

S L n Sy .
dnq ) H!YAu(rZ)(S W) [qu(rl)alx(ar<)kk(dr>)l.
niy
(5.8)
In order to cvaluat this cxpansion, we necd to consider the ‘partial

potential’

¢A(§1) = qu(rl)aix(ar<)kx(ar>)

=1 Jd’k fx(k)YAu(k)cxP('iE'f‘) (5.9)
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where
AT . .
fA(k) = dui f dr, r%@k(r)))x(krl)
0
A fre
= dni f drlrfuix(arljkx(urg)jx(krl) (5.10)
0
+ Ir dr;r} uiA(arg)kA(arl)j\(krll
We show 1n appendix 2 that
FoK) = ani’ j (krp) (5.11)
- R —— 2 . %
A k2422
In the standard manncer, we now find
n ~ ~
Loy (w _ 3/2 ¢ L Nt .
h‘l[k Y) 4/\(111) - (AR) HT szM ( 1) AHQYQm(L)YLM(rl)
} b}
N A Tl S T(LRO01A0) (LAMm| M) T, L (ry) (5.12)
LTI+ D20+ D) : W nath Tl
where specifically,
L, (r1) ! Tdk vz amil jy (kr2) i, (kry)
1 e ]
“LA (2"); k2+32 A L
0
l)\ ™ kn+2
- Ll A e G (5.15)
2n?dy  k?P+a? '

From the parity
Anﬂ' n-4£= even.

doubled. Write

ot the Clebsch-Gordan coefficient, f+L+A=c¢cven.  ITrom

Thus,

L+n+i=cven. The integrand is even and can be
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n+’
k

" 2rar Jy(krz)j, (kry). (5.14)

_ i AL NS
lnLA(rl) = -—~[_mdk

4n?

We consider two cases separately.

Case A: r)<r;. Let jA(krz) = Re hil)(krz) and close the contour
above. As k»0, the entire integrand behaves as KMATLEL e
The triangle inequality for the Clebsch-Gordan coefficient ensures
that 2+L-A>0. We know that n-2>0. Thus, n+L-1>0, and there is no
pole at k=0. The pole at k=ia contributes through its residue to

the integral:

.n+l

1 .
InLA(rl) = i- a kk(arg)lx(url) (5.15)
i
and
3/2 n GRS " -
y(ri+c-r2) = (4n)7' °q ) (c'/n)A_, Y. (r2)Y, (c)Y, ,(r))
~ T fir<r, nApEmLM ng Ay 2m LM

1/2
2 1 :
x (2x+1§{§2+l)] (L200]A0) (2LmM|n)a™ Tk, (ar2)i (ary).  (5.16)

In the limit as r;»0 in eqn (5.106), we recover cqn (3.6).

Case B: ry>r,. Proceed in a manner which is similar to casc A.
Let jL(krl) = Re hﬁl)(krl). Again, we can show that n+i-L>0 so that
there is no pole at k=0. The residuc at k=ia now yields

_ 1 .n+2Xx-1 _n+1l.
La () = 55 1 a’ i, (arz)k, (ary) (5.17)

and
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y(riveorn) o= an¥ 2 T (MmN ()Y, (€)Y ()
D nipdmLM H '

1/2
x[(?i:%%%%iffy] (L200|20) (L2 Mmlxp)an+lik(ar2)kL(ar,). (5.18)

As an example, we now apply these results to the problem of a
ring of source, such as a charged ring or a ring of source for the
Morse potential.

The distribution of source is such that an element of source dq

is in the vicinity of r,. Thus, we write

H

y(11) de(gx-gz)

it

A kA .
4n[qu§quu(r1)qu(r2} ai, (ar )k, (ar,). (5.19)

For the case of a ring, the magnitude of r, is constant. Hence,

dq = %% d¢, (5.20)

and

0]

~ 1/2 .
* 2X A- ! -
qu YAu(rz) f%}d¢2[ 4;1 %77%%!} P;(cosez)e 1ue,
= q Y, 0(r2)8 . (5.21)

We find for y(r,)

y(ri) = qagix(ar<)kx(ar>)(2A+1)Px(c059,)P#cosez) (5.22)
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We now use the results ohtained above to investigate dis-
placements by ¢ about r,. For r;<r, we have

v = 3 P T @AY, ()Y (T Y, ()

T2 nAugmLM
2141 1/2 n+l, ]
| x e e (L200|X0) (LaMm|AD)a 1L(ar1)kk(arz) (5.23)
and for r;>r,
)'(rl"’g) = (477) q Z AnSLYAO(rz)YLM(rl)Yﬂm(c)

niu2mlM n'!

1/2
2 .
x A+1L+12+ ] (LQOOIAO)(LRMm[AO)an+11A(arz)kL(arl). (5.24

In the 1imit as a tends to zern in these expressions, we

: recover the forms associated with the Coulomb potential:

l Iim Y(El)

Lim q§(2A+l)PA(cosel)%(cosez)lim ai, (ar )k, (ar )

a-0

rA

]l (cos81)P, (c0S6,) —p (5.25)
A T
>

n

from eqn (5.22). This expression usually is obtained as an example
in classical electrostatics by other means (cf., Jackson, 1962, p.04),

The Coulomb 1imit for the expansions (5.23) and (5.24) vields

9, ~
) _ 3/2 C 2 - s
zllilg Y(II*S_EZ)I'l( = (41‘[) q Z V!YL"‘Q,O(I‘Z)Y]:,'m(rl)Ypm(L)

T2 2Lm
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x 2Le1 l/z(L200|L+RO)(L2- |Lego){2Lr2e-1) 1!
22+1) (2L+22+1) mm 2L+ 1!
ry
T TET (5.26)
o]
and
1im y(ri+c-15) - iy oty r2)Y r
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Although we have examined the case of the ring as an example,
it is far from an idle one. There are numbers of systems of interest
in physics, chemistry, and biology in which essentially one atom or
ion sits in close proximity to a configuration of atoms which are
bound together as pentagons, hexagons, and higher regular polygons.
Some examples are the single crystal surfaces of pure, clean metals
and other solids, annular, charged ring molecules in chemistry,
and surface aggregates of phosphate ions in biological membranes.
It is easy to show by computer simulation (Schmidt, unpublished)
that the difference between the hexagon and a continuous ring
is a small one. Thus, the ring of charge or matter as the source
density for the Morse potential, for example, serves a useful function.
The analyses of vibrations and stabilities in such systems are

facilitated by the analyses given above.
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Appendix I. The Woods-Saxon and Buckingham exp-6 potentials

We have mentioned the Buckingham (1938) potential in the text
of this paper. In this appendix we show a general expression for the
Taylor series cxpansion of this potential. The result compliments
Briels (1980) functional expansion. First, however, we consider
a different kind of potential energy function, one which depends
upon the cxponential function, but is not directly related to the
Yukawa potential. The function is the Woods-Saxon (1954) potential
which has been used frequently in the analyses of nuclear models.

The Woods-Saxon potential has a simple form:

- -V
¢WS T T+ exp%(xwro)/p] : (1.1)

This function does not easily admit a Fourier transform. Therefore,
the direct application of the integral form of the Taylor series
is inappropriatc. We resort to a differential form (McKinley and
Schmidt, 198 ) in order to get useful results.

In particular, in the previous paper we showed that for a

scalar function of the form

= Yoo (r) [/ETE(r)]

o9}
~—
-
N
|

F(r) (1.2)

an arbitrary term in the Taylor series is
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+ é%](d/dr)n-q—lF(r). (1.3)

For the case of the Woods-Saxon potential, it is reasonably

easy to obtain a closed, polynomial representation for the differentia-
tions indicated in eqn (I.3).
The differentiation of the Woods-Saxon potential (I.1) to

arbitrary order is carried out as follows. Let

x = exp[(r-ro)/p]. (I.4)
Then
n
(@/dr)® = p‘“[x§§] (1.5)

and by means of mathematical induction we find
n n
(x%] - zlc’s‘xs(d/dx)s (1.6)
s=

where the coefficients Cg are determined by means of the following

initial and end conditions

cj=cCp=1
n (1.7) i
Cg = 0 for all s >n

and the recursion relation

(1.8)
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The differcntiation of the Woods-Saxon potential now leads to the

general term for the Taylor expansion

~ % ¢
1, o.n _ Vec" - (-9 (+q) ! q
m V) oy = i oh %Anng(r C)qzo )Tzt (/1)
-1

n-q-1 N2 n-c
Co e(s) + ] Cg be(s) (1.9)

n-q
x| (n-q) (p/r) §
g=1 s=1

in which e(s) 1is

e(s) = (-1)S —Xpis(r-ra)/el (1.10)
{1+exp[(r-r9)/p]}>

The Buckingham potential is simply a combination of the exponential

6

and van der Waals r = potentials:

oplr) = ae T - ¢/re. (1.11)

The Taylor expansion of this function is just the combinations of

eqn (4.12) and (4.17). We find specifically

. A
og(rer) = nzli_%Tl— Anipl(r-r')[abn[brkg_l(br)—(n—Q)kQ(br)l
£
1 C (+s)!(n+4-s)! ,
77 Tave L s ()] ) (1.12)
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Appendix II. The evaluation of the integral (5.10)

We evaluate the Fourier radial transform, eqn (5.10),

as follows.

Write the spherical Bessel equation as

Lierdy ()] + (k)25 (ko) - A1), (kr) = 0. (11.1)

We write the modified spherical Bessel equation for any of its solutions

as

;—;[rzf—rr,)\(ar)] - (ar)%,(ar) - A(A*1)g, (ar) = 0. (11.2)

Multiply the first equation by -cA(ar) and the second by jx(kr) and
add:

-oy (ar) g2 gy (ko) ]+ §, (ko) [r24he, (ar)] g, (ar) (kr)3, (kr)
- Jy(kr) (ar) ®g, (ar) = 0 (11.3)

The first two terms are integrated by parts. The third and fourth

terms are transposed. The result is

reyen), () = Ll 00rife (ar) - i (an)ghy, (o) |
(11.4)

When this result is substituted into eqn (5.10), we find
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£k = 2 (G (ara) 13, () rigds $ a5 kol
\ T aky (ara) (3, (kry)rigeri, (ery) - rid, (ard)gerd, ( rl)]o

+ ai,y (arg) 3y (ke righk, (or) - ik, (ar) gl (k) ]

2

. A
- _47i azrﬁj}\(krz)[kx(arz)ii(arz) - i)\(arz)k)" (ara2)]. (11.5)

k?+a?
The quantity in the brackets is a simple Wronskian which has the value

1/(a?r3) (Arfken, 1970). Thus,

ani?

k2+a2

fx(k) = jk(krz). (5.11)
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